Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Catheter Cardiovasc Interv ; 100(1): 175-178, 2022 07.
Article in English | MEDLINE | ID: covidwho-1802098

ABSTRACT

Left ventricular (LV) unloading is an important concept in patients undergoing peripheral venoarterial extracorporeal membrane oxygenation (VA-ECMO). We present a case of a 32-year-old male in acute cardiorespiratory collapse due to coronavirus disease (COVID-19) who underwent VA-ECMO cannulation in the setting of cardiogenic shock and acute respiratory distress syndrome. Due to inability to utilize percutaneous LV assist device (pLVAD) for LV unloading due to small end diastolic dimension, alternative strategies were explored. A traditionally utilized right ventricular support device, the ProTek Duo (TandemLife, Pittsburgh, PA), was utilized to drain the pulmonary artery, leading to improvement in parameters for cardiogenic shock. To our knowledge, this is the first case in which a ProTek Duo has been utilized in conjunction with VA-ECMO to provide LV unloading in support of a patient in cardiogenic shock. This method can be employed in future challenging situations where pLVAD is not feasible.


Subject(s)
COVID-19 , Drainage , Heart Failure , Respiratory Insufficiency , Adult , COVID-19/complications , Drainage/methods , Heart Failure/therapy , Heart Failure/virology , Humans , Male , Pulmonary Artery , Respiratory Insufficiency/therapy , Respiratory Insufficiency/virology , Shock, Cardiogenic/therapy , Treatment Outcome
2.
Cells ; 11(4)2022 02 10.
Article in English | MEDLINE | ID: covidwho-1690345

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is an extremely contagious disease whereby the virus damages the host's respiratory tract via entering through the ACE2 receptor. Cardiovascular disorder is being recognized in the majority of COVID-19 patients; yet, the relationship between SARS-CoV-2 and heart failure has not been established. In the present study, SARS-CoV-2 infection was induced in the monkey model. Thereafter, heart tissue samples were collected, and pathological changes were analyzed in the left ventricular tissue by hematoxylin and eosin, trichrome, and immunohistochemical staining specific to T lymphocytes and macrophages. The findings revealed that SARS-CoV-2 infection induces several pathological changes in the heart, which cause cardiomyocyte disarray, mononuclear infiltrates of inflammatory cells, and hypertrophy. Furthermore, collagen-specific staining showed the development of cardiac fibrosis in the interstitial and perivascular regions in the hearts of infected primates. Moreover, the myocardial tissue samples displayed multiple foci of inflammatory cells positive for T lymphocytes and macrophages within the myocardium. These findings suggest the progression of the disease, which can lead to the development of severe complications, including heart failure. Additionally, SARS-CoV-2 antigen staining detected the presence of virus particles in the myocardium. Thus, we found that SARS-CoV-2 infection is characterized by an exaggerated inflammatory immune response in the heart, which possibly contributes to myocardial remodeling and subsequent fibrosis.


Subject(s)
COVID-19/immunology , Heart Failure/physiopathology , Heart/physiopathology , Animals , Chlorocebus aethiops , Heart/virology , Heart Failure/virology , Heart Ventricles/physiopathology , Heart Ventricles/virology , Immune System/pathology , Macaca mulatta , Myocarditis/virology , Myocardium/metabolism , SARS-CoV-2/pathogenicity
4.
Int J Mol Sci ; 22(24)2021 Dec 17.
Article in English | MEDLINE | ID: covidwho-1580691

ABSTRACT

Although blood-heart-barrier (BHB) leakage is the hallmark of congestive (cardio-pulmonary) heart failure (CHF), the primary cause of death in elderly, and during viral myocarditis resulting from the novel coronavirus variants such as the severe acute respiratory syndrome novel corona virus 2 (SARS-CoV-2) known as COVID-19, the mechanism is unclear. The goal of this project is to determine the mechanism of the BHB in CHF. Endocardial endothelium (EE) is the BHB against leakage of blood from endocardium to the interstitium; however, this BHB is broken during CHF. Previous studies from our laboratory, and others have shown a robust activation of matrix metalloproteinase-9 (MMP-9) during CHF. MMP-9 degrades the connexins leading to EE dysfunction. We demonstrated juxtacrine coupling of EE with myocyte and mitochondria (Mito) but how it works still remains at large. To test whether activation of MMP-9 causes EE barrier dysfunction, we hypothesized that if that were the case then treatment with hydroxychloroquine (HCQ) could, in fact, inhibit MMP-9, and thus preserve the EE barrier/juxtacrine signaling, and synchronous endothelial-myocyte coupling. To determine this, CHF was created by aorta-vena cava fistula (AVF) employing the mouse as a model system. The sham, and AVF mice were treated with HCQ. Cardiac hypertrophy, tissue remodeling-induced mitochondrial-myocyte, and endothelial-myocyte contractions were measured. Microvascular leakage was measured using FITC-albumin conjugate. The cardiac function was measured by echocardiography (Echo). Results suggest that MMP-9 activation, endocardial endothelial leakage, endothelial-myocyte (E-M) uncoupling, dyssynchronous mitochondrial fusion-fission (Mfn2/Drp1 ratio), and mito-myocyte uncoupling in the AVF heart failure were found to be rampant; however, treatment with HCQ successfully mitigated some of the deleterious cardiac alterations during CHF. The findings have direct relevance to the gamut of cardiac manifestations, and the resultant phenotypes arising from the ongoing complications of COVID-19 in human subjects.


Subject(s)
COVID-19/complications , Heart Failure/metabolism , Heart/virology , Animals , Blood/virology , Blood Physiological Phenomena/immunology , COVID-19/physiopathology , Cardiomegaly/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Physiological Phenomena/immunology , Disease Models, Animal , Endothelium/metabolism , Heart/physiopathology , Heart Failure/virology , Hydroxychloroquine/pharmacology , Male , Matrix Metalloproteinase 9/drug effects , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Muscle Cells/metabolism , Myocardium/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Ventricular Remodeling/physiology
6.
Am J Emerg Med ; 51: 150-155, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1474267

ABSTRACT

BACKGROUND: Most COVID-19 infections result in a viral syndrome characterized by fever, cough, shortness of breath, and myalgias. A small but significant proportion of patients develop severe COVID-19 resulting in respiratory failure. Many of these patients also develop multi-organ dysfunction as a byproduct of their critical illness. Although heart failure can be a part of this, there also appears to be a subset of patients who have primary cardiac collapse from COVID-19. OBJECTIVE: Conduct a systematic review of COVID-19-associated myocarditis, including clinical presentation, risk factors, and prognosis. DISCUSSION: Our review demonstrates two distinct etiologies of primary acute heart failure in surprisingly equal incidence in patients with COVID-19: viral myocarditis and Takotsubo cardiomyopathy. COVID myocarditis, Takotsubo cardiomyopathy, and severe COVID-19 can be clinically indistinguishable. All can present with dyspnea and evidence of cardiac injury, although in myocarditis and Takotsubo this is due to primary cardiac dysfunction as compared to respiratory failure in severe COVID-19. CONCLUSION: COVID-19-associated myocarditis differs from COVID-19 respiratory failure by an early shock state. However, not all heart failure from COVID-19 is from direct viral infection; some patient's develop takotsubo cardiomyopathy. Regardless of etiology, steroids may be a beneficial treatment, similar to other critically ill COVID-19 patients. Evidence of cardiac injury in the form of ECG changes or elevated troponin in patients with COVID-19 should prompt providers to consider concurrent myocarditis.


Subject(s)
COVID-19/complications , Myocarditis/virology , Dyspnea , Heart Failure/virology , Humans , Respiratory Insufficiency/virology , Risk Factors , Takotsubo Cardiomyopathy/virology
7.
Molecules ; 26(18)2021 Sep 16.
Article in English | MEDLINE | ID: covidwho-1410350

ABSTRACT

Drug repositioning is a successful approach in medicinal research. It significantly simplifies the long-term process of clinical drug evaluation, since the drug being tested has already been approved for another condition. One example of drug repositioning involves cardiac glycosides (CGs), which have, for a long time, been used in heart medicine. Moreover, it has been known for decades that CGs also have great potential in cancer treatment and, thus, many clinical trials now evaluate their anticancer potential. Interestingly, heart failure and cancer are not the only conditions for which CGs could be effectively used. In recent years, the antiviral potential of CGs has been extensively studied, and with the ongoing SARS-CoV-2 pandemic, this interest in CGs has increased even more. Therefore, here, we present CGs as potent and promising antiviral compounds, which can interfere with almost any steps of the viral life cycle, except for the viral attachment to a host cell. In this review article, we summarize the reported data on this hot topic and discuss the mechanisms of antiviral action of CGs, with reference to the particular viral life cycle phase they interfere with.


Subject(s)
Antiviral Agents/therapeutic use , Cardiac Glycosides/therapeutic use , Antiviral Agents/pharmacology , COVID-19 , Cardiac Glycosides/metabolism , Digitoxin , Digoxin , Drug Repositioning/methods , Heart Failure/drug therapy , Heart Failure/virology , Humans , Neoplasms/drug therapy , Ouabain , Pandemics , SARS-CoV-2 , Sodium-Potassium-Exchanging ATPase , Virus Internalization/drug effects , Virus Replication/drug effects
10.
PLoS One ; 16(7): e0255263, 2021.
Article in English | MEDLINE | ID: covidwho-1332005

ABSTRACT

BACKGROUND: Patients presenting with the coronavirus-2019 disease (COVID-19) may have a high risk of cardiovascular adverse events, including death from cardiovascular causes. The long-term cardiovascular outcomes of these patients are entirely unknown. We aim to perform a registry of patients who have undergone a diagnostic nasopharyngeal swab for SARS-CoV-2 and to determine their long-term cardiovascular outcomes. STUDY AND DESIGN: This is a multicenter, observational, retrospective registry to be conducted at 17 centers in Spain and Italy (ClinicalTrials.gov number: NCT04359927). Consecutive patients older than 18 years, who underwent a real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for SARS-CoV2 in the participating institutions, will be included since March 2020, to August 2020. Patients will be classified into two groups, according to the results of the RT-PCR: COVID-19 positive or negative. The primary outcome will be cardiovascular mortality at 1 year. The secondary outcomes will be acute myocardial infarction, stroke, heart failure hospitalization, pulmonary embolism, and serious cardiac arrhythmias, at 1 year. Outcomes will be compared between the two groups. Events will be adjudicated by an independent clinical event committee. CONCLUSION: The results of this registry will contribute to a better understanding of the long-term cardiovascular implications of the COVID19.


Subject(s)
Arrhythmias, Cardiac/etiology , COVID-19/complications , Cardiovascular System/virology , Heart Failure/etiology , Myocardial Infarction/etiology , Stroke/etiology , Arrhythmias, Cardiac/virology , Female , Heart Failure/virology , Humans , Italy , Male , Myocardial Infarction/virology , Pulmonary Embolism/etiology , Pulmonary Embolism/virology , Registries , Retrospective Studies , Spain , Stroke/virology , Time Factors , Treatment Outcome
11.
J Med Virol ; 93(9): 5458-5473, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1272201

ABSTRACT

Kawasaki-like disease (KLD) and multisystem inflammatory syndrome in children (MIS-C) are considered as challenges for pediatric patients under the age of 18 infected with coronavirus disease 2019 (COVID-19). A systematic search was performed on July 2, 2020, and updated on December 1, 2020, to identify studies on KLD/MIS-C associated with COVID-19. The databases of Scopus, PubMed, Web of Science, Embase, and Scholar were searched. The hospitalized children with a presentation of Kawasaki disease (KD), KLD, MIS-C, or inflammatory shock syndromes were included. A total number of 133 children in 45 studies were reviewed. A total of 74 (55.6%) cases had been admitted to pediatric intensive care units (PICUs). Also, 49 (36.8%) patients had required respiratory support, of whom 31 (23.3%) cases had required mechanical ventilation/intubation, 18 (13.5%) cases had required other oxygen therapies. In total, 79 (59.4%) cases had been discharged from hospitals, 3 (2.2%) had been readmitted, 9 (6.7%) had been hospitalized at the time of the study, and 9 (6.7%) patients had expired due to the severe heart failure, shock, brain infarction. Similar outcomes had not been reported in other patients. Approximately two-thirds of the children with KLD associated with COVID-19 had been admitted to PICUs, around one-fourth of them had required mechanical ventilation/intubation, and even some of them had been required readmissions. Therefore, physicians are strongly recommended to monitor children that present with the characteristics of KD during the pandemic as they can be the dominant manifestations in children with COVID-19.


Subject(s)
Brain Infarction/complications , COVID-19/complications , Heart Failure/complications , Mucocutaneous Lymph Node Syndrome/complications , SARS-CoV-2/pathogenicity , Shock/complications , Systemic Inflammatory Response Syndrome/complications , Adolescent , Brain Infarction/diagnostic imaging , Brain Infarction/mortality , Brain Infarction/virology , COVID-19/diagnostic imaging , COVID-19/mortality , COVID-19/virology , Child , Child, Preschool , Female , Heart Failure/diagnostic imaging , Heart Failure/mortality , Heart Failure/virology , Humans , Infant , Infant, Newborn , Intensive Care Units, Pediatric , Male , Mucocutaneous Lymph Node Syndrome/diagnostic imaging , Mucocutaneous Lymph Node Syndrome/mortality , Mucocutaneous Lymph Node Syndrome/virology , Patient Readmission/statistics & numerical data , Respiration, Artificial , SARS-CoV-2/physiology , Shock/diagnostic imaging , Shock/mortality , Shock/virology , Survival Analysis , Systemic Inflammatory Response Syndrome/diagnostic imaging , Systemic Inflammatory Response Syndrome/mortality , Systemic Inflammatory Response Syndrome/virology
12.
Open Heart ; 8(1)2021 06.
Article in English | MEDLINE | ID: covidwho-1269804

ABSTRACT

BACKGROUND: Prior diagnosis of heart failure (HF) is associated with increased length of hospital stay (LOS) and mortality from COVID-19. Associations between substance use, venous thromboembolism (VTE) or peripheral arterial disease (PAD) and its effects on LOS or mortality in patients with HF hospitalised with COVID-19 remain unknown. OBJECTIVE: This study identified risk factors associated with poor in-hospital outcomes among patients with HF hospitalised with COVID-19. METHODS: Case-control study was conducted of patients with prior diagnosis of HF hospitalised with COVID-19 at an academic tertiary care centre from 1 January 2020 to 28 February 2021. Patients with HF hospitalised with COVID-19 with risk factors were compared with those without risk factors for clinical characteristics, LOS and mortality. Multivariate regression was conducted to identify multiple predictors of increased LOS and in-hospital mortality in patients with HF hospitalised with COVID-19. RESULTS: Total of 211 patients with HF were hospitalised with COVID-19. Women had longer LOS than men (9 days vs 7 days; p<0.001). Compared with patients without PAD or ischaemic stroke, patients with PAD or ischaemic stroke had longer LOS (7 days vs 9 days; p=0.012 and 7 days vs 11 days, p<0.001, respectively). Older patients (aged 65 and above) had increased in-hospital mortality compared with younger patients (adjusted OR: 1.04; 95% CI 1.00 to 1.07; p=0.036). Prior diagnosis of VTE increased mortality more than threefold in patients with HF hospitalised with COVID-19 (adjusted OR: 3.33; 95% CI 1.29 to 8.43; p=0.011). CONCLUSION: Vascular diseases increase LOS and mortality in patients with HF hospitalised with COVID-19.


Subject(s)
COVID-19/mortality , Comorbidity/trends , Heart Failure/mortality , Vascular Diseases/complications , Aged , Aged, 80 and over , Anticoagulants/therapeutic use , COVID-19/complications , COVID-19/diagnosis , COVID-19/virology , Case-Control Studies , Female , Heart Failure/diagnosis , Heart Failure/drug therapy , Heart Failure/virology , Hospitalization/statistics & numerical data , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Ischemic Stroke/complications , Ischemic Stroke/epidemiology , Length of Stay/statistics & numerical data , Male , Middle Aged , Peripheral Arterial Disease/complications , Prognosis , Retrospective Studies , Risk Factors , SARS-CoV-2/genetics , Substance-Related Disorders/complications , Venous Thromboembolism/complications
15.
Curr Heart Fail Rep ; 18(3): 99-106, 2021 06.
Article in English | MEDLINE | ID: covidwho-1198496

ABSTRACT

PURPOSE OF THE REVIEW: Coronavirus Disease 2019 (COVID-19) and cardiovascular (CV) disease have a close relationship that emerged from the earliest reports. The aim of this review is to show the possible associations between COVID-19 and heart failure (HF) with preserved ejection fraction (HFpEF). RECENT FINDINGS: In hospitalized patients with COVID-19, the prevalence of HFpEF is high, ranging from 4 to 16%, probably due to the shared cardio-metabolic risk profile. Indeed, comorbidities including hypertension, diabetes, obesity and chronic kidney disease - known predictors of a severe course of COVID-19 - are major causes of HFpEF, too. COVID-19 may represent a precipitating factor leading to acute decompensation of HF in patients with known HFpEF and in those with subclinical diastolic dysfunction, which becomes overt. COVID-19 may also directly or indirectly affect the heart. In otherwise healthy patients, echocardiographic studies showed that the majority of COVID-19 patients present diastolic (rather than systolic) impairment, pulmonary hypertension and right ventricular dysfunction. Such abnormalities are observed both in the acute or subacute phase of COVID-19. Cardiac magnetic resonance reveals myocardial inflammation and fibrosis in up to the 78% of patients in the chronic phase of the disease. These findings suggest that COVID-19 might be a novel independent risk factor for the development of HFpEF, through the activation of a systemic pro-inflammatory state. Follow-up studies are urgently needed to better understand long-term sequelae of COVID-19 inflammatory cardiomyopathy.


Subject(s)
COVID-19 , Heart Failure , COVID-19/epidemiology , COVID-19/physiopathology , Comorbidity , Disease Progression , Heart Failure/epidemiology , Heart Failure/immunology , Heart Failure/virology , Humans , SARS-CoV-2 , Stroke Volume
16.
Diabetes Res Clin Pract ; 175: 108794, 2021 May.
Article in English | MEDLINE | ID: covidwho-1163637

ABSTRACT

Pre-existing heart failure (HF) in diagnosed patients with coronavirus disease 2019 (COVID-19) is associated with a close to two-fold increased mortality rate compared to COVID-19 patients without prior HF history. Moreover, based both on biomarker as well as imaging findings, widespread endothelial and cardiac injury seems to be present in many patients presenting with COVID-19, associated with adverse outcomes including new onset HF. Systematic echocardiographic studies in patients with COVID-19 indicate that the most common cardiac pathology is right ventricular (RV) dilatation (39%) over and above both left ventricular (LV) diastolic dysfunction (16%) and LV systolic dysfunction (10%). In addition, myocardial injury, assessed by magnetic resonance imaging (MRI), is observed in some 55% to 70% of patients recently recovered from COVID-19 even in those who didn't get very sick during the acute illness. These observations seem to indicate a potentially rather high risk of clinical HF emerging in patients post-COVID-19, warranting close long-term monitoring of patients during recovery. On the other hand, given the established adverse prognostic role that pre-existing HF plays as a comorbidity in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, it not only seems important in the still ongoing COVID-19 pandemic that all patients with known HF should proactively be well controlled and treated according to current guidelines, but also additionally be considered for priority vaccination against the SARS-CoV-2 infection if not yet vaccinated.


Subject(s)
COVID-19/physiopathology , Heart Failure/virology , COVID-19/pathology , COVID-19/therapy , Female , Heart Failure/physiopathology , Heart Failure/therapy , Humans , Male , Pandemics , SARS-CoV-2/isolation & purification , Treatment Outcome
17.
Curr Cardiol Rev ; 17(1): 74-77, 2021.
Article in English | MEDLINE | ID: covidwho-1136353

ABSTRACT

Since its outbreak in China at the end of 2019, the new coronavirus disease (COVID-19) was characterized by both easy spreading and high mortality. The latter proved to be way more elevated in the North of Italy -with a peak of 18.4% in region Lombardia and even 31% in the city of Bergamo and surrounding county- than in the rest of the world. In an attempt to conceptualize the reasons for such a dramatic situation, four key elements have been identified: COVID-19 itself, old age, lung disease, and heart failure. Their harmful combination has been named "The deadly quartet". The underlying risk factors, among which a lot of them are distinctive features of the population in northern Italy, have been summarized as "unmodifiable", "partially modifiable", and "modifiable", for the sake of clarity. Up-to-date scientific evidence in this field has been described in the form of a narrative and easy-to-read review.


Subject(s)
COVID-19/mortality , Heart Failure/mortality , Lung Diseases/mortality , Age Factors , Aged , COVID-19/epidemiology , Disease Outbreaks , Heart Failure/epidemiology , Heart Failure/virology , Humans , Italy/epidemiology , Lung Diseases/epidemiology , Lung Diseases/virology , Risk Factors , SARS-CoV-2
18.
Int J Infect Dis ; 102: 70-72, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1060401

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has reached pandemic levels. Cardiovascular complications in COVID-19 have been reported frequently, however evidence for a causal relationship has not been established. This report describes the detection of SARS-CoV-2 viral genomes in a patient with symptoms of heart failure, in whom endomyocardial biopsy was investigated following a latency period of 4 weeks after the onset of pulmonary symptoms. The viral infection was accompanied by myocardial inflammation indicating an infection of the heart muscle.


Subject(s)
COVID-19/complications , Heart Failure/virology , Myocarditis/virology , SARS-CoV-2/isolation & purification , Biopsy , COVID-19/virology , COVID-19 Nucleic Acid Testing , Female , Heart/virology , Humans , Lung/pathology , Middle Aged , Pandemics , Virus Latency
19.
ESC Heart Fail ; 8(2): 943-952, 2021 04.
Article in English | MEDLINE | ID: covidwho-1047171

ABSTRACT

AIMS: Patients with advanced heart failure (HF) with reduced left ventricular ejection fraction (HFrEF) and concurrent coronavirus disease 2019 (COVID-19) might have a higher risk of severe events. METHODS AND RESULTS: We retrospectively studied 16 patients with advanced HFrEF who developed COVID-19 between 1 March and 29 May 2020. Follow-up lasted until 30 September. Ten patients previously hospitalized with decompensated HFrEF were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during hospitalization. Six patients undergoing ambulatory care at initiation of COVID-19 symptoms were hospitalized because of advanced HFrEF. All patients who experienced worsening of HFrEF due to COVID-19 required higher doses or introduction of additional inotropic drugs or intra-aortic balloon pump in the intensive care unit. The mean intravenous dobutamine dose before SARS-CoV-2 infection in previously hospitalized patients (n = 10) and the median (inter-quartile range) peak intravenous dobutamine dose during SARS-CoV-2 infection in all patients (n = 16) were 2 (0-7) µg/kg/min and 20 (14-20) (P < 0.001), respectively. During follow-up, 56% underwent heart transplantation (n = 2) or died (n = 7). Four patients died during hospitalization from mixed shock consequent to severe acute respiratory syndrome with inflammatory storm syndrome associated with septic and cardiogenic shock during COVID-19. After COVID-19 recovery, two patients died from mixed septic and cardiogenic shock and one from sustained ventricular tachycardia and cardiogenic shock. Five patients were discharged from hospital to ambulatory care. Four were awaiting heart transplantation. CONCLUSION: Worsening of advanced HF by COVID-19 is associated with high mortality. This report highlights the importance of preventing COVID-19 in patients with advanced HF.


Subject(s)
COVID-19/complications , Heart Failure/mortality , Heart Failure/therapy , Adult , Aged , COVID-19/mortality , COVID-19/therapy , Cardiovascular Agents/therapeutic use , Critical Care , Female , Heart Failure/virology , Heart Transplantation , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , Stroke Volume , Survival Rate , Treatment Outcome
20.
Mol Cell Biochem ; 476(4): 1891-1895, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1044487

ABSTRACT

Corona virus disease-19 (covid-19) is caused by a coronavirus that is also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and is generally characterized by fever, respiratory inflammation, and multi-organ failure in susceptible hosts. One of the first things during inflammation is the response by acute phase proteins coupled with coagulation. The angiotensinogen (a substrate for hypertension) is one such acute phase protein and goes on to explain an association of covid-19 with that of angiotensin-converting enzyme-2 (ACE2, a metallopeptidase). Therefore, it is advisable to administer, and test the efficacy of specific blocker(s) of angiotensinogen such as siRNAs or antibodies to covid-19 subjects. Covid-19 activates neutrophils, macrophages, but decreases T-helper cells activity. The metalloproteinases promote the activation of these inflammatory immune cells, therefore; we surmise that doxycycline (a metalloproteinase inhibitor, and a safer antibiotic) would benefit the covid-19 subjects. Along these lines, an anti-acid has also been suggested for mitigation of the covid-19 complications. Interestingly, there are three primary vegetables (celery, carrot, and long-squash) which are alkaline in their pH-range as compared to many others. Hence, treatment with fresh juice (without any preservative) from these vegies or the antioxidants derived from purple carrot and cabbage together with appropriate anti-coagulants may also help prevent or lessen the detrimental effects of the covid-19 pathological outcomes. These suggested remedies might be included in the list of putative interventions that are currently being investigated towards mitigating the multi-organ damage by Covid-19 during the ongoing pandemic.


Subject(s)
COVID-19 Drug Treatment , Heart Failure/drug therapy , Inflammation/drug therapy , RNA, Small Interfering/therapeutic use , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensinogen/antagonists & inhibitors , Angiotensinogen/genetics , COVID-19/genetics , COVID-19/physiopathology , COVID-19/virology , Heart/drug effects , Heart/physiopathology , Heart/virology , Heart Failure/complications , Heart Failure/physiopathology , Heart Failure/virology , Humans , Inflammation/complications , Inflammation/genetics , Inflammation/virology , Neutrophils/virology , Pandemics , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL